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EQUATIONS OF POWERED ROCKET ASCENT
AND ORBIT TRAJECTORY

1. INTRODUCTION

In the analysis of systems in space, one often encounters the problem of specification and
design of a launch vehicle and its trajectory, so that certain performance requirements may be
met. Also of interest are the flight path of the space vehicle in orbit, particularly with respect
to interactive ground systems, and the relation of the orbit to the launch profile. As will be
explained below, however, it is usually difficult to extract the requisite information from vari-
ous standard references. This report should help to remedy this situation. One of the primary
goals of this report is to present a logical exposition of approximations and sufficient informa-
tion and guidance to facilitate an investigator's choice of the simplest analysis technique suited
to his needs. Hie may thus possibly be able to avoid an unnecessarily complex, time-consuming
analysis technique, such as the "full" numerical solution approach to the problem.

In many standard reference sources on powered rocket ascent fiam the earth, equations
are introduced in an ad hoc and incomplete manner. There are also inaccuracies and incon-
sistencies to contend with. For example, Ball and 3)sborne's Eqs. (1-20) and (1-22) 111 leave
out certain kinematic terms which are related to a radial gravitational field and could become
important for high rocket velocities. Ehricke (21 correctly introduces the effect of these terms in
his !:q. (5-27) in an ad hoc fashion, but then he seemingly incorrectly introduces th'ir effect

later in his Eqs. (6-39) and (6-40), also in an ad hoc fashion. Ruppe 131 gives a basically
correct treatment of these terms in his Eqs. (3.1)-(3.4), but from the outset his treatment

tion. FutemrBall and Osborne [I] give a sketchy treatment of earth's rotation effects, in
which an initial rocket velocity imparted by earth's rotation is included in a flat earth approxi-
mation. Ruppe [3J does a more complete job on this, but his results are also restricted to a flat
earth. In most instances a powered rocket ascent will not cover a large enough ground range to
necessitate taking curvature of the earth into account, but in sume cases it will. To cover these
cases, where ground range might be in excess of 500 n.mi., a correct treatment of earth's cur-
vature effects is necessary, but it is absent from the references that have been discussed [1-31.

This report is intended is to remedy the above deficiencies and present in one place, in a

consistent notation set, and in reasonably coherent fashion the basic equations of powered rock-

Tostart with, in the first part of Section 2, we obtain the rocket equations of motion in an iner-
tilframe. As in nearly all elementary treatments, the complications from the fact that the at-

mopeeis not stationary in an inertial reference frame are initially ignored. In the latter part
othssection these equations of motion are integrated to give velocity and coordinate expres-

sosas a function of time in an inertial frame. In Section 3, we consider the complications of

Manuscript submitted August 29, 1978.
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earth's rotation, including the effect of a corotating atmosphere. A "full* solution of the rocket
trajectory would thus involve a complicated three-dimensional numerical solution of the equa-
tions of motion. In Section 3 it is shown that the great complications which arise from this
course of action can be avoided by solving simplified equations of motion in the earth-fixed,
rotating reference frame for the period of powered rocket ascent when aerodynamic effects are
important; the data are then transformed back to the inertial frame, which amounts to addition
of a rotation velocity vector; and finally the inertial velocities computed as in Section 2 for por-
tions of the rocket flight when aerodynamic effects are not important are added. The results of
Section 3 demonstrate that approximate velocity and coordinate expressions for rocket flight can
be obtained by a rather simple extension of results from Section 2. The expressions in Section
3 will be found to include, to a good approximation, tot only earth and atmosphere rotation
effects, but also earth's curvature effects for the tot. powered trajectory. In Section 4 the
nature of the elliptical satellite orbit and its point of entry, as determined from the injection
conditions which exist at cutoff of the rocket engines, are considered. In Section 5 the pro-
cedures are described for determining the vehicle flight coordinates versus time in both
powered and orbital phases, and as seen by both inertial and earth observers. In Section 6 there
is a discussion of the equations obtained and their underlying validity. -

2. POWERED ROCKET ASCENT NEGLECTING EARTH'S ROTATION EFFECTS

The Equations of Motion

The coordinate system used to describe rocket motion is shown in Fig. 1. The forces on
the rocket are the thrust force of the engine, gravity, and aerodynamic forces. As in most ele-
mentary treatments 11-3), we assume initially that the atmosphere is stationary, so that aero-
dynamic forces on the rocket arise purely because of the rocket motion. Actually, the atmo-
sphere corotates with the earth to a first approximation, but for large launch vehicles this turns
out to have consequences of only secondary importance for rocket motion 13]. We do, how-
ever, include this as one of the rotating earth effects in Section 3. With the assumptiom of a
stationary atmosphere and an axially symmetric rocket in our inertial framn,, the simplest case
of rocket motion will be planar and conveniently describable in circular coordinates (see. Fij.
1), because of the radial nature of the gravitational field and the spherical earth. The effects of
earth's rotation will be disregarded for now, but will be included in Section 3. Shown in Fig. 1
are the radius vector r from the center of the earth to the satellite, its associated altitude y, the
angular displacement from launch 0, which gives the ground range x when the radius of the *1
earth R is factored in, the flight path angle of the center of mass of the rocket ., with respect to
the local horizontal (or "heading"), and the angle of attack a of the rocket axis with respect to
the flight direction.

For a - 0 in Fig. I the only aerodynamic force on the symmetric rocket will be a drag
force opposite to the flight direction. If one defines drag D and lift L aeromynamic forces for
a i 0 as being antiparallel and perpendicular to the flight direction, it is found for small a that
L is linearly proportional to a Pnd that the correction to D is approximately quadratic in a 12J.
Unlike Ehricke 121 and Ruppe 131, Ball and Osborne [II unconventionally refer drag and lift
direction to the rocket axis of symmetry (or "roll* axis). In Fig. 2 we indicate a force diagram
for the rocket and include a brief description of the symbols. We use the standard assumptions
found in many references 11-3):

? !1
L .f
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- -- VEHICLE CENTERLINE

" - FLIGHT Dk(ICTION (CENTER OF MASS)

LOCAL IOfiZONTAL

Fig. I - Coordinate system for two-dimensional rocket motioh4

0L

II

* CENTER OF GRAVITY L - LIFT
O -- CENTER OF PRESSURE W - WEIGHT
S-FLIGHT PATH HEADING tj - VECTOR FROM CENTER OF GRAVITY

a - ANGLE OF ATTACK TO CENTER OF COMBUSTION
T -THRUST FORCE 12 - VECTOR FROM CENIER OF GRAVITY

- ANGLE OF THRUST TO CENTER OF PRESSURE
o -- DRAG

Fig, 2 - Force diagram for the rocket with symbol legend

* the aerodynamic forces act through the center of pressure,

Sthe force of gravity acts through the center of gravity, and

0 the thrust force is applied through the "center of combustioW,

One may utilize the Lagrangian method in this problem, suitably generalized to include
the presence of nonconservative forces 141. A brief review of this approach is included in
Appendix A. In Appendix B this method is applied to the present problem in finding the
Lagrangian L and generalized nonconservative forces.

3I

* -. , 1! t
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L.agrange's equations are found its

where q, r , 0. and oi in turn. Their evaluation yields

r4 + AI P2 -(LIM) cos 0-(DIM) sin + (TIM)sin 4 + a4 (+

+42,4- (LIM) sin0- (D/f) cos 0+ (T/IM)coo4 + a + 0).and (3)

Na -I1(L coas a+ D sinea - Itrsin i. (4)

In effect, Sall and Osborne III leave out the term 42~ in Eq. (2) and a term i *in Eq.
(3) in their Eqs, (I-20) and (1-22), (Note that i. ri correpundJ to their y. A) Equations (2)
and (3) ane the equations of motion for the rat Al and angutar. coordtinates of the center of
mass, and Eq. (4) applies to the coordinate a for the internal motion (cf. Fig. 1). The center of
mass Eqs.. (2) and (3). in which we are partict.-larly interested, can be manipulated as follows.

We have for the velocity of the center of mass:

1v Cosw 3bRi + i 0

v Vý + 2 + r'

i (4 Kr (LIM) cos 0 - (DIM) sin 0 + (TMP) sin 4* + a+ )
+ r (-U4 (LM)sin *-(DIM) cos * + (TIM) co 0+a+10+4i

vm i I-Xr (LIM) cat 0 (DIM) sin 0 + (TIM) sin ( + a 4-

+ v cos I- (LIM) sine (DIM) cos +4 (TIM) cos (04 a + p)

Combinin; terms, we have
~m (K/rl) sin -(DIM) +(TIM) cos (a +6 (6)

Thi,, can also be written as

v(T/MO cos, cos n - (DIM) - (K/rl) sin - (TIM) sin 11sin a, (61)

and this is the form of Ehricke's Eq. (5-23) 12). To obtain the equation for y~we differentiateI

Eq. (5): v cos 0 - v (sin e) *+ ,

lience.

v (sin *)*u 1Asin* - D + -Leo(*+#) cos* -

4

- J -S - ----
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+ + + sin* . -a c c (, * + + ).

Combining terms and using Eq. (3), we have

- cos s sin (0 +J + + (7)

This can be written as

4i C os Bsin 0 + +, sin C os a - Cos 1'

which correponds to the frorm of Ehricke's Eq. (S-27) (21. The derivation of Eqs. (6) and (7)
t ~is very similar to Ruppe's procedure for obtaining his Eq&. (3.3) and (3.4) 131,

The first level or simplification. which is analyzed elsewhere (2,31, results from the fact
that rot the large launch vehicles of interest here. # < a, so that the equations of motionsimplify t

vp -w K/r 2) sin - (DIM) + (TIM) cos a and (8)

4 - I(Ki) - (vlr)j cos * + (LIM) + (TIM) sln a. (9)

Another great simplification results when onc finds (2,31 that the increase of thrust at hiller
altitudes is approximately cancelled by the drag effect in the calculation of' cutoff conditions.
Small or is normally a requirement when aerodynamic forces are a factor (e.g., for first-stagemotion or altitudes loss than 60 km), Under these conditions the lift can be written as in Ref.

2:

L S pv2/2 (OC'L/O a S pv 2/2, (10)

j where S is a r,-ference cross-sectional area of the vehicle, p is the atmospheric density, and
*CL/Oc is a constant determined from wind-tunnel testing. Hence, at this level of J
simplification,
[• = -(K/r2) sin 4 + (TIM) cos a U11)

and

4 K v2 2T +sina, (12)

one can do relatively simple calculations. Small a ascent is desirable from the stndpoint of
launch efficiency, i.e., minimum fuel expenditure for accomplishing the mission 12,31, Thrust
is coni;dered to be a constant in Eqs. (11) and (02),. with

T - M v,, (13)

S

t
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Hiere v,~ is the teffectve speed with which exhaiust pives are ejec ted relative to the noll'e exit
Aperture 131. and 4 is the rote at which exhaust mass is ejected. One simplified. Aupproximate
Procedure for cquations (it) And (12) is to: (a) assume a Programmed deflection function *(I)
for the various aWunch vehicle states. which results in correct orbit entry conditions at burnout.
(b) sol fe Eq. 00I by irtelration, andi (c) compute angle of attack from (12). The last step in
this procedure is simply to check the assumption of reasonably small it used in obtaining Eqs.
(11) and U12). In this context 4% is given as the solution or

T (I + k8C, /80) S.iv2/2T (14)
This equation turns out to he identical to the result derived by Ehricke (cf. his Eqs& (6-40). (6-
42), and (6-S0)), extvwp (or the square- bracketed term in Eq, (14), which Ehrlcke refers to as a
centrifugal load (actor 121. He introduces this factor in an Ad hoc fashion, and he apparently
incorrectly replaces v in this factor by v cos 0. Ehficke shows that (fo a large winged rocket
vehikle the term enclosed in braces in the denominmaor substantially reduces angle of attack a
beneath its vacuum value, particularly (fo the first stage of the launch vehicle

Normally, a is small in first-stage motion when aerodynamic effects are important, but
cin be fairly large in higher stage motion when Aerodynamic focces are insignificant, depending
on required orbit injection conditions. The presence of the cos a term in Eq. 001 can thus be
important for higher stages.

listegrsutle of The EqualaMs of MedsiLu

sta e follow lihricke's notation 121 in integrating Eq, 001 for a particular stage of a multi-
saerocket vehicle. We introduce t1 as the burn duration of the st: So and the normalized

time variable ( (fo tha' stage:

Here f varies between 0 and 1. During this time. mass varies as

M/M. -(M. - AirlM'-l I M -f (16)

wheire

Pi~ a parameter which is given as the weight of propellant for that stage divided by the initial
weight of the launch vehicle at that stage. If we assrume small angles a( attack, such that cos

a 1, and normalize th', vehicle speed to the exit speed of the exhatust ga'es, i.e., define

we find a.'Aly (sf. Eq. ((-24) in Rtf. 121) that

&vlv, - A)( a X - X.- -In 0 - CA) - (Al/R.) (I6)f. (19)
where n. 'A the thrust-to-weight ratio

T1 TMsa(R) - TIW.. (20)

where g(r) -K/r
2 is the acceleration of gravity, and

6
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*I S' I sin d (211

liere 0 varies from its value at the beginning of the particular stage, which is the same as its
cutoff value at the end of the preceding stage tintermediate coasting can be included as a
separalte silape), to its value at the particular time according to a well-defined prescrip!ion for
0(f). Ehricke uses a deflection program such that # vanishes at 0 -( and I and 0 - 0 at

1 - 1121. This is not necessarily optimum. The integration in N. (21) is performed by a sim-
pie numerical method, and so %(J) in Eq. (19) is determined at the particular ( mesh points
selected for the numerical integration. Ruppe 13I gives a procedure for obtaining analytic
renults. Then from Fig. I and Eq. (3), altitude and ground range are determined from

Y - v, vrei J sin Idf

x - vO - vIl c f os * R • R(# - (,22)

From Eq. (14), the angle of altta is found from

I -ll Co s + Idi
un a - (23) T

+ l r_-_ Ip

The initial parameters (,. x, and Y. for the particular stage in question are the same as the
cutoff values rot the preceding stage, For the very first stage .x, - .v 0, and we would use

0 in our cllculations. We should reiterate, however, that earth's rotation elfects have not
been included. Fortunately, the additional complicoiicis caused by their inclusion do not
present unsurmountable problems, as we will attempt to demonstrate in the next section.

3. INCLUSION OF EARTH'S ROTATION

The preceding equations would be valid in an inertial frame of reference if all effects of a
rotatiig earth could be excluded. One effect of a ,otating earth is to impart an initial velocity to
the rocket at launch. If this were the only effect, this velocity could be simply vectorially added
to the velocities found in the preceding section and integrated to give a correction to altitude
and ground coordinates, There is another effect, however; the earth's atmosphere corotales
with the earth to a first approximation (disregarding the ordinary winds experienced by an earth
observer). If the atmosphere were stationary in an inertial reference frame, an earth observer
would he subjectec to consant wind speed of 903 cos L knots, where L is the terrestrial latitude
of the observer. This suggests that an exact solution of the rocket problem might profitably be
carried out in A frame of reference which rotates with the earth, at least while aerodynamic
effe'n.s are importart.t This is the basis oC an approximnation sugleszed by Ruppe 131. For the
sake of this discussion, we suppose that the first stage of our multisitae rocket vehicle
corresponds to the period of rocket flight when aerodynamic effects are impoiaint. Ruppe sue-
gests 131 that the equations of motion should be solved in the rotating reference frame (in
which the atmosphere is stationary) for the first stlae, that the results should be transformed
back to the inertial frame of reference, ard .ubsequent stages Ir. .'ed in the inertial frame,
since aerodynamic effects #re unimportant for the higher stages. kie transformation from the
rotating reference frame back to the inertial reference frame after cutoff of the first stage gives

7. . . . ".'..
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Lv1 - AvT*I + V., (24)

where Av, is the rocket velocity in the inertial frame after cutoff of stage I, and AvaI is the
same veloity determined in the rotating reference frame. From the general theory of such
transtomr'ions (see, e.g., Ref. 5)

SxLr, - -,RlI + cos L* * v-t. (25)

where rl is the radius vector to the satellite, and Yl its altitude after cutoff of the first stage.
The approximation indicated in Eq. (2S) is associated with a 'fiat earth' approximation for the
first-stage motion in which the curvature of the earth is disregarded, so that L, is the latitude of
the launch point, and t is a unit vector in the easterly direction at the time and place of launch.
This approximati.n, whk-h is discussed later, is very often valid for firt-stage motion, and for
the modest altitudes attained, one sees that v. is approximately the velocity imparted to the
rocket at its launch point by earth's rotation in an inertial frame. The magnitude of *LR is IS)
465 m/s (1 524 ftO - 903 knots. The true inertial velocity during the Ath stage is given by

'(rt + r 4+ ... + ith) - y, 4, A&,• + AvI + 4 (Av&)l M v, + T'. (26)

Here Avj•t > 1) is the velocity increment of the j th stage (computed u in the previous sec-
tion), and (As,) is the velocity increment in the Ath stage. The entity rt is the burn duration
time for the j th stage, and f is the reduced time variable which varies between 0 and I (cf. Eq.
(IS)). We shall find Av• later and justify that it and Y' in Eq. (34) are approximately coplanar,
just as in the previous section. But for now, we simply assume this fact and proceed tu carry
out the vector addition of v. and v' in Eq. (26). We do this with the help of Fig. 3, which
shows the planar motion represented by v and the vector vY drawn from the launch point in an
easterly direction. The orientation of the plane of Y' is specified by the azimuth angle a, meas-
ured from north (N) to east (E) at the launch point. The vector v' is specified by its magnitude
v and by its direction, which can be deterniined from a., the heading ,', and the ground range
angle #', all of which are indicated in Fig. 3, To facilitate the vector addition, we break v. into
a component v,.L perpendicular to the plane of v' and a component v,1 in this plane. Evi-
dently,

v#L - vo cos a. and v, - v. sin a. (27)

Hence, v can be specified as the sum of three perpendicular component vectors (shown in Fig.
4),

- v, + v, + vY4, (28)

where v, is parallel to the radius vector from the center of the earth to the rocket, and Y, is
perpendicular to it, but in the plane of v'. From the geometry in Fig. 4 it follows that

vA - v, COS' + vol lcos 4'.

v. - v' sin * + v, i sin q. (29)

and

v - Iv, + v, + V!
The true heading U with respect to the local horizontal is given by

sine - v,/v. (30)

SS
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EQUATOR

"I Fig. 3 - Vector orientations for inclusion of earth's rotation effects
in a Pat earth approximation for first stage (see test)

MO"TON
W' V•" Tv, WITHOUT EARTH'S

HORIZONTAL PLANE

Fig. 4 - Vector diagram for inclusion of earth's rolttion in a,
flat earth approximation for first stage

In order to find the azimuth angle a for the vehicle Rlight path project-,cn, we need to make use
of spherical trigonometry formulae. If we disregard the effect of initial velocity from earth's
rotation, we can relate the entities in Fig. 5 by the use of the laws of cosines and sines: ,1

sin L' - sin L. cos 0' + cos 4 cos a. sin •'

sin a' - sin a. cos 4/cos L' i &

sin(I' - 4) " sin a. sin ,'/cos L'. (31)
These account for the variations of latitude, azimuth angle, and longitude, respectively, in the
plane of 1' [3]. Now from Fig. 6,

V-tan a - a' + v.. cos a' tan a' + (32)
v v cos a' - vr.L sina' vh - v.l, tann a'

9
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FIX. 5 -- Flight path projection or two- J
dimensional rocket motion on a nonrotating earth

"I

V.Z ?

Fig. 6 - Vector diagram for azimuth angle determination
toking into account earth's rotation

We thus have completed the vector addition of Eq. (26). With the knowledge of v, , and a,

we can determine the actual position of the space vehicle in an inertial coordinate system. We
can describe these position coordinates as the altitude of the space vehicle plus the latitude and
longitude of its flight projection on the surface of the earth in an inertial geocentric-equatorial
coordinate system [5). (In this system the latitude-longitude grid is fixed in space.) With . ,.

x v/v,, (33)

we have

y - YO - v, t , X sin df'

L - L v ~tI f. R c + os a df'

10
L-Lo-v_______y

S, ~ -i
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ftf M sin a dt' (34)

I+ -4t R +y

for the changes in altitude, latitude, and longitude during a particular burn stage of the rocket
vehicle. The parameters in the above integrals are evaluated for values of f' between 0 and C•
where f - 0 Is associated with cutoff of the preceding stage, and I - 1 is associated withcutoff of the present stage.

The preceding expressions, particularly those which invoke the approximation in Eq. (25),
can be considered valid in a fiat earth approximation for the first stage-the period of rocket
ascent when aerodynamic effects are significant. This approximation for any part of rocket
motion can be considered valid, for example, when 0' can be disregarded, as in Eqs. (29) and
(31). We note, for example, that a ground range of 500 n.mi. corresponds to 0' =M 8.3*. For
this value sin 0' is only about 1/7 the value of cos 6' - 0.99, so that sin 0' - 0 and cos 0'-
I is an adequate approximation, particularly for the significant portion of rocket trajectory when
V >> v, Hence, as long as the first-stage motion covers a ground range of 500 n.mi. or less,
or 0' < 10', we have a sumcient condition for the validity of the flat earth approximation for
the first stage. This condition is very often satisfied by first-stage motion, although in our equa-
tions it does not have to be satisfied by higher stages of a multistage rocket.

It is possible to go beyond the flat earth approximation for the first stage, and we alreadyShave done so in the statement of Eq. (25). The initial problem of using v, -WE x r, is that
we don't know r, ahead of time, since it is determined as a subsequent step based on the velo-
city determination. We have exploited a flat earth approximation to sLbstitute for r, a vector
from the center of the earth through the launch point. This allowed us to determine

k V v - v0 + v', where v' was computed without the effects of a rotating earth. This itself is only
an approximation for the contribution AvR, to v', although we shall see later that it is quite a
good one. With v(t) determined, r(t) followed from Eqs. (27) through (34). Next, one may
choose to investigate the earth's curvature effect for the first stage by substituting fi from this
detormination into v. -- tE x r, as the start of another iteration. The vector r, will be
specified by the inertial coordinates y1 , L1, and I1. From then on, the computations of Eqs.
(26) through (34) are repeated, with some modifications, in this new iteration. The
modifications are necessitated by the new orientation of the vector v,. The true flight path, at
least the one determined from the calculation which preceded the new iteration, is shown in
Fig. 7 aiong with other data which will be used to determine the aforementioned modifications.
Also shown is the flight path for v'. The easterly direction at (LU 1I) is the same as that at
S(L,. it). We will use the given information about the spherical triangle ABC in Fig. 7
(namely, the two angles I, - I, and a,, and included side w/2 - L,) to determine azimuth angle
aI and %6t, which is the angular distance in the plane of v' associated with the first stage. These
calculations will specify the orientation of v,. From standard spherical trigonometry formulae
[1), we have

cot1 - LI sinRi- - L.) -,cos '- Lj cos(1l - 4) + sln(l - ,) cota

or

tan L' - (cos L4)-' sin L, cos~ll - 4) + cot a,, sin(/, -/o) (35)

i which determines Li, then
sin q6 - sin(/, - 1.) cos L'/sin a,, (36)

II
i1
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Fig, I Flight path projecition tin nontrotatmn lolituile-Ionsitutte grid The
diagram makes lioailbla the inclusion or earth's rotationi Ond earth'x curvature
for the first stage,

determines 01. Azimuth angle a, Is found from Eq,. 13)~

sin at -sin ai cos 4/cos L' 37

Now the modifications of' Eqs. (27) through (34) consist or the following:
vt- v0 cos a, and v.11 -*v~, sin a, (38)

which replaces Eq. (27) -

Vh V vCOS ~ + VOI1 Cos(#' -40

v,- V sin #' -t* v,,,, sin(#' -

and

V - (VI + V, + V?1 ", (39)

which Is used Instead of Eq. (29); the other equations are unchanued, The new iteration will
result In new velocities and positions, which may be made the basis or another iteration, irit ils
necessary to satisfy convergence criteria,

12
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It remains now to specify AvRI in Eq. (26). It is well known (e.g., see kef. 5) that
transformation from an inertial to the rotating frame of reference is accompanied by the addi- 2
tion of effective Coriolis and centrifugal forces in the equations of motion; i.e. [51,

dyRl/dt - dvr/dr - 2W E X -R x (oEX x r),

where the subscripts R and F refer to rotating and inertial frames, respectively. When
expressed in rotating frame coordinates, the aerodynamic forces associated with the first term
on the right properly depend only on rocket motion. The latter two terms are Coriolis and cen-
trifugal terms. We estimate in Appendix C how large the velocity contributions from the vari-
ous forces might typically be for a large rocket vehicle at cutoff of the first stage 11-31. In order j
of decreasing values, we find Avr: AvG: V AVD: AVcor: "11, - 1000: 300: 150: 50: 10: 1.5, :
where we list, in order, effects of thrust, gravity, initial velocity from earth's rotation, drag
(which is approximately cancelled by thrust increase due to ambient pressure decrease [2,31),
Coriolis force, and centrifugal force. These estimates'indicate the conclusion that the principal
effect of a rotating earth is to add in the velocity v. as prescribed in Eqs. (25) and (26) and dis-
cussed subsequent to these equations. The Coriolis and centrifugal contributions appear to be
very small, so that AvRI could be approximated quite well by the approach of Section 2, which
disregards the effects of a rotating earth and atmosphere.

The preceding results notwithstanding, one may wish to improve the specification of
iAvR, particularly if computational simplicity can be preserved. The accuracy can be improved
if we include only the component of velocity effect from Coriolis and centrifugal forces in the
particular plane of motion which is associaied with the disregard of rotational effects. To illus-
trate the mathematical point that this is a good approximation fo" the smali correction from
Coriolis and centrifugal terms, let us consider what happens in Eqs. (29) and (30) when 0' 0
and v0 << v'. In Eq. (29) we have

[v' 2 + 2V'V cos 2 + vI +]/2 Cos+ v C S + 0

and in Eq. (29) sin 4#- v'sin V,'/v. In these equations only the component v,11 enters in first

order for v and op. The only first order correction involving vo1 that can be found is in the
determination of a in Eq. (32), and this is not important. Hence, along with Ruppe [31, we
transform to the rotating frame coordinates in Eqs. (2) and (3) by setting

0 'R + '01
S~~where i

where .2E cos L. sin a..

When Eq. (40) is substituted into Eqs. (2) and (3), and the steps which led to Eq3. (6) and (7)
are redone, it is found that

VR 0 -[-j-r~o sin D + -L cos(a + )(41)

K rx.2 VA se+L~~~+-:i~~~ 2~ -r. cos, + -L sin (a + Pl) + -L + 2vx '0 (42)'•

where

VR 13

S.. ........ .I- .~~~~~~~................ .= .. . . . .. , :' •" : '. !
*,.-. . .. .. * . .:A-h•.-. • . . , ,
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The symbol (WVi )i has been defined in connection with Eq. (26). One now sees additional
Coriolis and centrifugal terms in the equation of motion. In the same way that Eqs. (I I) and
(12) were obtained, one finds

i -[ - - 1 t sin, + cos a (43)

r - - COS + + - sin a + 2vto,. (44)

In terms of a programmed deflection function C(O). one obtains the angle of attack aI; from
frmMvt(ý - 2ý,) + M(K/r 2) [I - v~r/K - r342o/Ki cos

!:•sin e-(4S)sin.- T (1 + (&CLIO,) SpvA•2T)

The solution for vk is found as in Eq. (19). It is
X' .M vit/v, - X. I - In (I - f A) - (An.) (1#)(. (46)

where • and A are given by Eqs. (15) and (17), respectively, and

- TMog' (R) - T/W (47)

Here,

-'(r) Klrl - r• -1 (r) - rQj (48)

is an *apparent" acceleration of gravity and

o g'(R) sin # df'. (49)g,(R)

As indicated previously, the centrifugal correction to gravity is only a few tenths of a percent.
For the first stage X0 - 0 and, from Eq. (39), we should include the initial condition

S(0) - 2*o (first stage) (SO)

in our programmed deflection function. This is similar to the conclusion reached by Ruppe 131.
Since ws - 7.292 x I0-s rad/s, it is seen that ,(0) in Eq. (50) is of the order of 5 x l0-3
deg/s, which corresponds to V in 200 s. Similarly, RQ is on the order of 10-2 mls2. These
are evidently very small corrections, in accordance with our previous estimates, so that AV4 ' In
Eq. (24) and v' in Eq. (26) could be computed to a good first approximation as if there were no
earth's rotation effects. A

The computational procedure for relatively simple analyses of powered rocket ascent is
now clear; it may be summarized as follows. The most significant part of the rocket trajectory
is assumed to be above the atmosphere and associated with second and higher states, with
v0 << v', so that for any qualitative analysia one may ignore earth's rotation effects. For this
purpose, one uses: (a) a programmed deflection function *(W) 12,31; (b) a thrust given by Eq,
(13) with correctly chosen exhaust velocity v, (3,61, (c) Eqs. (I) through (22) for the velo-
city, altitude, and ground range of the rocket in all stages, where r - R Is an expedient approxi-
mation for low altitude rocket flights and analytic results [31; (d) Eq. (23) for checks on the
smallness of the angle of attack; and (e) Eq. (31) for the determination of earth's curvature

14
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effects in the computation of latitude, azimuth angle, and longitude of the rocket flight path
projection on the surface of a nonrotating earth (hence, an inertial latitude-longitude grid). If
the conditions warrant a flat earth approximation, as determined by the ground range calcula-
tion (e.g., if 1' 0 10, then step (e) can be dispensed with. Also, iW the approximation r - R
has been made in step (c), one may improve these results by starting with them in anotheri. • iteration of stop (c) without the approximation.

If one wishes to improve quanritative accuracy by taking earth's rotation effects into

account, he should find the following summary useful. One could start with the results in the
preceding paragraph and simply add in v0 to the previous velocities v as in Eq's. (25) and (26),
where r, was determined in the prcvious results. Actually, to be consistent, one should

i. redetermine the first-stage results of the preceding paragraph with the use of Eqs. (45) through

(50). There probably will be no appreciabie differences from the previous first-stage results
obtained without regard for earth's rotation effects, but the results should at least be checked.
If a flat earth approximation is valid for the first stage, one computes component and total
speeds from Eqs. (27) and (29) with the approximation in Eq. (25), heading 41 from Eq. (30).
and azimuth angle a from Eq. (32). The primed entities in these equations are known at this
point, having already been computed. The altitude and flight path projection are computed,
presumably through numerical integration, in Eq. (34), If a flat earth aproximation is not valid
for the first stage, one computes component and total speeds from Eqs, (38) and (39), wbere

Sa is substituted for a1 (primed entities are known). Heading, azimuth angle, altitude, and
flight path projection are again determined from Eqs. (30), (32), and (34). Thesa results can
then be used as the start of another iteration for obtaining greater accuracy in the inclusion of
earth's rotation effects when the flat earth approximation for the first stage is not sufficiently
accurate. The description of this iteration procedure is included in the paragraph which
includes Eq.a. (35) through (39). It is expected that no more than one iteration would be
required. Even one iteration might not be worthwhile in view of the basic approximations we
have made regarding thrust and aerodynamic effects. The computations are greatly simplified if
a flat earth approximation can be made for the total powered rocket trajectory. All that would
be required for a complete specification of orbit injection conditions (described in the next sec-
tion) is the altitude calculation from the preceding paragraph, with possible alterations which
might arise from Eqs. (46) through (50) for the first stage and simple vector addition of veloci-
ties, as in Eqs. (25) and (26). One could start the other way around, however, with desired
orbit injection conditions (v, 0, and a) and obtain the launch profile conditions (v', 4', aQ)
needed to obtain them, here v' and 0' are rocket burnout parameters. This method is explained
in Appendix D.

Finally, if one wants complete quantitative accuracy regarding all the effects we have
mentioned-or if one has sufficient information about aerodynamic effects and other factors of
the system, such as drag and lift coefficients, a model atmosphere, thrust variability, etc., and
wants to include these effects in his analysis-he may achieve this in a full numerical solution
to the problem. The discussion of Kooy 161 is particularly helpful in this regard. Rocket velo-
city and coordinates can be straightforwardly obtained by Kooy's procedure (61 in a geocentric
equatorial coordinate system by a Runge-Kutta integration method, The conversion of these
results to latitude, longitude, azimuth, altitude, and heading variations is simple, and is dis-
cussed in the next section. Kooy's method appears to be quite feasible, as well as accurate,
with the use of modern computers.

S..15
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4. ORBIT TRAJECTORY FROM INJECTION
CONDITIONS AT ROCKET BURNOUT

At the end of powered rocket ascent (i.e., "burnout") the payload is assumed to enter an
elliptical orbit above the earth's atmosphere in the spherical gravitational field of the earth.
This satellite motion thus satisfies (in an inertial frame)

=•i: V~~ + (W!d) f - 0. 5)+

where K -1407645 x 1016 6.275 x (n1m04 is the same parameter as used pre-
sec2  sec2

viously (see, e.g., Eq. (2)). The small corrections in the equation of motion due to the oblate
earth, aerodynamic drag, etc., can be handled by the techniques of perturbation theory (1), but
will not be included in the present report. Dotting Eq. (51) with i and integrating with respect
to time, one obtains an energy constant of the motion

E" - v2/2 - K/r. (52)

Similarly, vector multiplying Eq. (51) by r and integrating with respect to time, one obtains an
angular momentum constant of the motion:

h - r x (, (53)I qience, the motion is planar. Now if one vector multiplies Eq. (51) by h and integrates it with
respect to time, one finds 11.5)

i x h - K + eJ (54)

where e is a vector integration constant. If we define 9 as the angle between e and r, the dot
product of this equation with r yields the orbit equation 11,31

I K 2
T2 " (1+ecos 0), where e- KI-+'- (55)

is the eccentricity of the orbit. Fig. Sa shows the elliptical orbit circumscribed about the earth
centered at one of the foci, and Fig. 8b shows an associated vector diagram. Also shown are
several parameters used in discussing the ellipse and the motion of the satellite. The parame-
ters r., r,. 1, and a are the perigee, apogee, latus rectum, and semimAjor axis lengths, respec-
tively; their values can be derived from Eq. (55). The angle 9 is measured from the perigee
vector (in the direction of e), as shown in Fig. 8b, and the ve!ocity and heading of the satellite
are shown in a manner consistent with their previous use in this report. From the relation

dr _h d v sin 1 (56)

and Eq. (55), one obtains [1i

e sin a - (rv2/K) sin i cos .

r cos 9 - (rv 2/K) cos2 I - 1. (57)

These are useful relations for many purposes, but we use them here for an unambiguous deter-
mination of the injection angle 0, and eccentricity e in terms of the injection conditions r, v,,
and 0, at burnout. The motion of the satellite in orbit is thus determined from injection condi-
tions, Eq. (55), in which

16
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_ _t

"Fig. I - (a) The elliptical satellite orbit

to 1t

Fig. 8 - (b) Associated Vector diagram

AE -0/2- K/r, and A r, v, Cos t,,, (58)

and the expression for the time t,(0) it takes a satellite to travel within one revolution from
perigee to the angle 0. This is 11)

,(,)m .IA.I~t-t 1-, _ e 1 /2)"sin90-2 tan-'[11 tan - e ( o () 1
K1+ 2 l+ rCos 0

Hence, for example, the time it takes to travel from 9, to 0 is

t 1(, - 10) - t(0) - t (0,). (60)

The only other thing we need to know is the orientation of the ellipse with respect to the
earth In an inertial coordinate system. This can be specified from the vector directions of h and
e, which are determined from injection conditions. Hence

h - r, x , (61)

and from Eq. (52)

eh ^ ,- x-r . , .LA (62)

- ' rI
JK
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The inertial coordinate system, which we have previously mentioned, is the geocentric-
equatorial system 11,51 in which a latitude-longitude grid is superimposed upon the surface of
the earth, but, unlike the conventional latitude-longitude grid which rotates with the earth, this
grid is fixed in space and coincides with the conventional grid at the time of launch of the
rocket from the earth. The latitude and longitude changes in Eqs. (31) and (34) are under-
stood to be relative to this space-fixed latitude-longitude grid. A picture or satellite motion in
the geocentrlc-equatorial system is shown irn Fi . 9. The Cartesian coordinate directions 1, . *
(unit vectors) form a right-hinded set, with K pointing north (perpendicular to the equatorial
plane) and P pointing in the vernal equinox direction of the sun. A vector V has Cartesian
components ( 1Y, V, Y) in this system or components ( V, V0., V) in the associated spheri-
cal coordinate system. This vector can also be represented in circular perifocal [51 coordinates
associated with the orbital plane (see Fig. 8) as (W,, Vp, V,), where I is in the direction of b.
The transformation between the latter two coordinate tystems is 4

P - F (63) ,

i- & -€cos a 4 +sin a 4 (63
z P X - sin a C- os a •

where a symbol with a caret denotes a unit vector in the direction indicated. Here angle a in
Fig. 9 is the azimuth angle of satellite motion, as described previously. The angle 0: is the co-
latitude of satellite motion; i.e., in terms of latitude L

e - w/2 - L. (64)

where L > 0 in the northern hemisphere and L < 0 in the southern hemisphere. To com.
plete the transformation to Cartesian coordinate axes 1, k, we use the expression for the
azimuthal angle 0

•- *' (0) + 1, (65) :

where 0. (0) is the azimuth of the Greenwich meridian at the time of rocket launch. The long.
itude of the satellite I is positive if it is east of the Greenwich meridian, negative if west, Now
from simple Irilonometry,

LAS~K 1t4O!Thl

LINF OF NODES

A

Mil, 9 - Satellite motion in the geocentric-equatoriatl
coordinate system
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f-conL cos*l+cooL sin* + sin L k

4-sinLcos*1+sInLsin *)-cosLR
4-- sin* +cosO). (66)

This completes the orthogonal transformsti,)ns between the above coordinate systems. Hence,
for exampt, from Eq. (63)

I-m (- sinea sin L cos + coo a sin *]
+ (-sin asin L 0-cos acos 01 (67)

4- sin a corn L A,.
which can be calculated from the orbit Injection conditions for a, 1, and I

Also shown In Fig. 9 are other angles used to describe the orientation of the ellipse in the
geocentric equatorial system. These a~re the Inclination i, the longitude of the ascending node
fl. and thb argument of perigee P. The inclination angle is the angle between A'and h, found
from Eqs. (63) and (64) to be

Cos i -2-it -- sine6-k -slr nacosL. (68)
In general, 0 4 i w radians, but this equation restricts inclination angles to the range
IL v - L 1. depending on a. For inclinations 0 4 1 < w/2, we have generally east-

erly motion, or so called *direct" orbits (5). For w/2 < i 4 w, we have "retrograde" orbits 15).
If we define the line of nodes as a line from the renter of the earth through the point of cross-

g ing of the satellite through the equatorial plane, and If the unit vector A has this direction, then

w (kx M)/sin

-~ IcosoL coo. aP + sin L cos .a-sip L sin a 4'.(69)
sin i

This crn be evaluated from orbit injection %conditions.

Beibre we can finish the specification of ft twd Pi, we shall need to calculate e from Eq.
(V):-~% 0 ~ 1

- V xbh- FvhsIP -X- sin*

It iIv I + 1hsin [cos a 4-sin a4 (70)

j which can N~: t ;Austed fromn orbit injection conditions. For (I one obtains

cost)I -hA 1-4(in i)'l1 ( x 2) - - (sin i)-i 2 1

(s lin a sin L sin 0+ cos a cos 0I, (71a)

where 0 (1 0 (2 rad in general, but

a < vif A -) > 0,
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or its equivalent, if

f) > 0.
4npice, from Eq. (67)

S< v if - sin a sin L cos 0 + cos a sin 0 > 0. (7 1 )

One also obtains from Eqs, (69) and (70)
Cos's - C-I 1 a.-e

7 L oscos " cosa*-1 +sinL 2 sin (72a)

e...v sin #(ce7IKa)9 1

where 0 4; 4 2w In general, but if e • JR > 0. A < w.i.e.,

S< wif 1hCos I- sin L.- sin#cosacosL >0. (72b)

All the entitits In Eqs. (68) through (72) are ýalculable from known orbit injection conditions,
and the specification of the elliptical orbit is complete. For simplicity, one might choose to et
4ba (0) - 0 aid 40 - I in the preceding expressions, which &mounts to a redefinition of the 1
and ) directions.

S. VEHICLE FLIGHT SEEN BY INERTIAL
AND EARTH OBSERVERS

In Sections 2 and 3 the functions for the inertial frame, L(t), 1(t),
F y(), a (t). v(t). and #(t), were specified for rocket flight. In Section 4 additional informa-

tion was derived to specify these entities for the orbital flight. We shall specify the first three
of these along with the counterpart functions LR(l), 1R(t). and yR(t) which describe what the
earth observer sees.

It is very simple to deal with the period of powered rocket ascent, i.e., the time frame
0 < t < ;, where t, is the time after launch to burnout or orbit injection, In Section 3 we
have discussed the computation of altitude, latitude, and longitude in an inertial frame, i.e.,
y (t), L (t), and I(t), respectively, during this time period. the solution for yR () and L(t) is
thus also found, since

YR y(t) - Y W) LA () L W~) (73)

The function /I (W) is simply found from
11t Wt I W~t - W'rt . (74)

where
ws 7.292 x 10-: rad/s - 15.04 deg/h; (75)

see Eq. (35) and 11.51.

Pot the time frame t > ti, the sate'llte is in the elliptical orbit trajectory discussed in the
preceding section. The angle 0 in Fig. 9 is increasing in the direction of motion of the satellite,
by definition, so a computational procedure is to pick a set of increasing 9 values, starting with

20
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9, determined from Eq. (57) end orbit injectioi, conditions, antd to determine an awc.iated set
of times from Eqs, (O9M and (60), starting with I - t. From spherical trigonometry formulte
on the right spherical triangle ABC In Fig. 9, the law of sines determines latitudc L (r) - L1 (0)
at the"e times fromn

sin L(r) - sin i siat [. 4- 0(0)1. (76)

where 0f0) is given, and s at.d i have previously been computed from orbit inj.cton conditions
by Eos. (68) and (72) A cotangent formula III determines l(G) tt these times from

tan I(M) + ( - fl0 tan Is + 6e)] cos , (77)

where O is determined from I.t;ection conditions by Eq. (71), and 1R(I) is given by Eq. (72).
Finally, altitude y(t) ii determined from the known orbit in Eq. (53) by the formula

Y (1t) -v~t - r 10 W I - R W). (78)
where R(e) is the radius of the earth, which can be taken as approximately constant, and

r 1[0() for the orbit is given by Eq. (55).

G. DISCUSSION

In Sections 2 and 3 this report develops the equations required for an analysis of powered
rocket trajectory. Most of the effort has been concentrated on the approximations which permit
the simpler analysis techniques; the approach to the more complex, completely quantitative
numerical methods, however, has at least been indicated. The computational procedures for
various levels of simplicity and approximation are delineated by summary discussions near the
end of Section 3. The investigator can thus choose the procedure which fits his needs. It was
relnited that a radial gravitaiional field introduces ientrifheal terms in an inertial frame,
terms which are omitted rom some literature sources or given incorrectly. A systematic pro-o-
codure for takingl earth's rotation effects (including atmosphere corotation) into account was

also described. a subjct often treated inompletely in the literature. Perhaps the most
significant contribution of this report is the treatment of earth's curvature effects and how the
earth's rotation effects are integrated with it in the simpler analyses of powered rocket trajec-
tory. The literature treatments of approximate analyses of powered rocket trajectory, at least
those seen by the author, stay within the confines of the flat-earth approximation; this approxi-
mation is discussed in Section 3. The full numerical solution of the rocket problem 161 does
typically include earth's curvature effects.

One of the major approximations of simpler analysis techniques of powered rocket trajec-
tory is the cancellation of drag and thrust increase effects. This approximation appears to be
quite good for many rockets 12,31, i.e,, within 2% for strategic choice of the constant thrust
value for each stage (3). For large rockets, however, the thrust increase effect is expected to
more than counterbalance the drag effect, 6o that one may wish to include these effects expli-
citly for greater quantitative accuracy. The simplification from constant thrust is then lost from
the analysis, but it is eliminated anyway when angles of attack become large, as they frequently
do in higher stage motion. One may then wish to solve equations (8) and (9) in Section 2, or
equations (10) and (11), by numerical integration (c.g,, by the Runge-Kutta method). Infor-
mation about thrust increase and aerodynamic effects is included in Appendix E. For somewhat
greater understanding and control of the launch trajectory, one may wish to assume a profile
air) for the angle of attack and solve for the flight path hoading # and for speed in the course
of the numerical interaction, a job suited for a computer. Previously, we had suggested, for
simplicity, an assumed #(W) profile in the calculations.

21



U. H. REILLY

Section 4 relates the rocket burnout parameters obtained in Sections 2 and 3 to the
specification of the elliptical orbit subsequently traversed by the payload and to the point on this
orbit where it is injected. The equations are developed somewhat more clearly and completely
than usual here, and it is hoped that the orbit determintation part of the trajectory analysis is
thus facilitated.

In Section S the trjcory coordinates of the powered rocket ascent and orbital flight are
determined as the altitude and the latitude and longitude of the flight projection on the earth's
surface a a function of time after launch. Two caes are considered: (I) the trajectory as seen
by a heavenly, inertial observer on a space-fixed latitude-longitude grid on the earth, and (2)
the more important case of the common earth-fixed observer who rotates underneath the orbit
and sees the rocket and payload from a different perspective. Actually, the first case is just
obtained as an intermediate step to the determination of the second case.

There are other perturbations which have not been considered in this report, such as the
effect of the oblate earth, variations in aerodynamic forces, solar radiation pressure, etc. IlI
Some )f these eflects alter the long term orbital motion of satellites, which is of no particular
consequence for many simple analyses or for this report, which concerns itself with powered
rocket ascent and short-term orbit motion. Variable winds on the rocket are assumed to be
corrected for in flight as part of the vehicle steering control.
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Appedix A
LAGRANGIAN METHOD, INCLUDING THE PRESENCE OF

NONCONSERVATIVE FORCES

A system of particles is effectively in equilibrium under the influence of all applied and
inertial forces.' The applied forces may be further classified as conservative (derivable as the
negative gradient of a scalar potential) or nonconservative. We may define the forces as fol-
lows:

F, - - , Conservative force on Pth particle

SF;: Nonconservative force on i'th particle

-mli,: Inertial force on I'th particle. (AI)

Newton's equation of motion is

F, + F; - m,,,, -0, (A2)

here restated as particle equilibrium under all three kinds of forces. Since each particle is in
effective equilibrium, an arbitrary, infinitesimal, virtual displacement of all the particles will
involve no work. This is known as d'Alembert's principle of virtual displacements. Hence

S+ A - - 0.(A3)

Because of constraints in the problem (e.g., boundaries, rigid body constraints of the particles,
etc.), particle motion will depend on a smaller set of coordinates (e.g., angles of rotation, the
center of mass coordinates, etc.), which are referred to 141 as independent generalized coordi-
natesqn ...., qf. Hence,

S- xi(q,. 4 ..... qt), (A4)
|•8xj E (b[x, l8fl aqj. (AM)

|j
Therefore, )

One obtains

M1VS -axi mix, Oxq

SId. 13,L - i .1 8I
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SIt is also true that

F, 8x a .' 8,- W- , ._ I U1, a,,
OLi "'j and

81i~i , a ,,j -ij

Hence, if we include the kinetic energies and conservative forces in the Lagrangian L as

F(.. y / ... - • m., • .. /... (A7)
where i, is determined by differentiating Eq. (A4), then Eq. (A3) can be written as N"d Od L 9L F,]:

d 84 j a8 - 0, (AB)

Swhere 4

F g t aqj

defines the generalized nonconservative force associated with the coordinate qj. Since the qj
coordinates are independent and the displacements 8 qj are arbitrary, each of the square brackets
in Eq. (AS) vanishes, and we therefore obtain Lagrange's equations suitably generalized to
include nonconservative forces.

'~t'
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Appendix B

L DERIVATION OF THE LAGRANGIAN AND GENERALIZED FORCES
FOR THE ROCKET PROBLEM

The coordinate variables which can vary independently in the problem fare the coordinates

(r, 0) of the center of mass and the angle of attack a. Now

xj - r +yj, (BI)

where r is the radius vector to the center of mass and P, is the vector displacement from the
center of mass to the i th particle mass element in the rocket. The kinetic energy T is given by

T r- M#( +j,)- 2 '&f2 + MA•2 +"
12~ 2

i I but since y m,1 - 0 by definition of the center of mass, the last term vanishes. Conse-

quently, we have the familiar separation of center of mass motion from internal motion. Now

1 2-.x. , "2 mM jki k(J12
mpi E Ek (Pt) &m(Pd.

S- 1. j m,(8,, 8l. - 8 k. 81.) Ak A. (pr), (pr).

-- - b E m,&k 1A Pt POi - 4k fit Pit POk

I1 .
a I -a .c ; where I- E m,[LO, -I 3.

"2 -

In this case of planar motion, wherea - &i (z direction normal to plane), I - E m~pi.

SHence,

T- - M(r2+ r4 -/&. (B2)I2 2
The only conservative force in the problem is gravity, which can be related to a potential:

mKnK _mnK MK
-=r--- P-. U,- --r12 ri r2 i r

Hence, the appropriate Lagrangian which includes conservative forces, is

L - - M(;2 + .2•) + L - 2 + (see Eq. (A7)). (B3)
2 2

The nonconservative forces are distributed over the mass elements:

L- EL,. D- ED,, T- ET1.
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M. H. REILLY

From Fig. 2:

F,' - M, +D,÷+T). (r , (L,+D+T).P

-L cos- Dsin + Tsin(# +,, ). (+4)

Similarly,

F, • L D++ %•Olr + )
; -0(L+) -(L+D+T) r4

-- L sin 4-Dcoo#+ Tcos(*+. +,) r. (BS)

Finally,

Fr - :(L, + K, + TI) (r +y,)
i5

- 2 sin 8a/2 (I xei(a)] - 8a[f xe(1)i]

F, - t(L, + K, + T,) (P xj.

Now we use the information that lift and dral act as if concentrated at the center of pressure
and thrust acts as If localized at the center of combustion:

F- (L + D) (2 x 12) -T U( x11) - 121L cos a + D sin a] - I T sin . (B6)

.4
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Appendix C

VELOCITY INCREMENT ESTIMATES FOR VARIOUS EFFECTSIN FIRST-STAGE ROCKET MOTION

The ideal velocity (i.e., from thrust only) of a large rocket at first-stage cutoff [1-31 could
be estimated (e.g., see Eq. (s) of text) as

Avr- ( / dt = ( / )• ,(C I)1'o', M
where t is the burn duration of the first stage, and , is an average mass. The gravity loss
from this velocity is

AVG gti =0.3(T/M4):,. (C2) -where we Indicate a 30% gravity loss [2]. Now Av r might be =- 3050 m/s, so that AV 6 = 900

m/s. The drag loss from AV r is probably = 5% overall, although the drag force can reach a
maximum of about 25% of the thrust force during the first-stage motion 12].

,Hence, AvD 150 m/s 0.05 Av?, (C3)
which is almost canceled b, thrust increase due to ambient pressure decrease in the ascent

[2,31. By comparison we have a relatively large value 151 of velocity imparted by earth's rota-

tion

v. wE R - 450 rn/s 0. 15 AVt (CO)
We estimate the Coriolis effect as

tid
orjr &vc 2coI~ dt 2w,(T/Fd) t' dt

AVo,, W111 &Vr 0.01 AVr (CS)
for a burn time tj somewhat more than 2 min. The centrifugal effect contribution is given as

AVf,.a = WjRtR - attrv - 0.0015 AVT. (C6)

I .
Z
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Appenadix D

DETERMINATION OF LAUNCH PROFILE PARAMETERS
* ~FROM DESIRED ORBIT INJECTION CONDITIONS I

IN A FLAT EARTH APPROXIMATION

If we are given a set of desired orbit injection condftlons, such as altitude y, rocket speed
v, heading #, and itziniuth angle a, we face the q%;estion of the launch profile cond"' as needed1. ~ ~~to obtain them. We design the rocket to attain the speed V' and y' at burnout .Žerdn

N earth's rotatlimi) for a final heading 0', and need to determin. the apparent launch azimuth a..
The relationship between these parameters Is obtained with the help of the vector diagram in
Fig. 131. The notation used here has been defined in Sectkon 3 of the text (cf. also Figs. 4 and
6). The following results may readily be obtained.

- A4

- ~ ~ ~ ~ ~ ~ / +v go w/2, co a i ~".(I
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This determines *', and now if we define

Aa a - -a (D3)

and use the law of sines in Fig. DI,

sin Aa - v. cos a/(v' cos 4"), (D4) I
from which a. is determined. Since v. is in the horizontal plane, we have

y, - y. (D4)

V A similar set of equations has been derived by Ruppe [31.

1 1
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Appendix E

THRUST INCREASE AND AERODYNAMIC EFFECTS
For a rocket with swivel cointrol motors the total thrust includes pressure forces and is

normally presented [2,3,61 as

, T - 4v, + A [p,, - p(y)l, (En)

where M is the mass loss rate of exhaust gases, v, is the actual average axial speed of these
gases relative to the rocket, A is the exit aperture area, p, is the pressure of the exhaust gases
at the exit aperture, and p(y) is the ambient pressure of the atmosphere at altitude y. Nor-
mally, p(y) varies from p(o) to zero for first-stage motion, so that the thrust varies from its
sea level value Ti to its vacuum value T,,. Hence, Tj, and T,• are usually given for the first
stage, and T,., is given for the higher stages of a rocket. In effect the ratio

x - T,,/ T, (132)

is given for the first-stage motion, and it is easily shown that (El) can be rewritten as
T - ,•1 x-I

Very frequently x is the range 1.12 to 1.15, and the increase of thrust with altitude is thus exhi-
bited.

As we have indicated in the text, drag tends to counterbalance the effect of thrust
increase. The aerodynamic forces of lift L and drag D are important in first-stage motion,
where angles of attack a are normally programmed to be small (e.g., a - 3). From 121 one
then has for the aerodynamic forces:

D - CDo + C'D a•] (pv2/2) S

L - [CL•/8a] a (pv2/2) S, (14).

where p is the atmospheric density, v is the rocket speed, and S is an appropriate reference
cross-sectional area (e.g., that for the first stage) to which the aerodynamic coefficients are
referred. These coefficients for a two-stage rocket are shown by Ehricke (21 in his Fig. 5-8 as a
function of local mach number, which is the speed v divided by the speed of sound at the alti-
tude of the rocket. One may thus infer the aerodynamic forces from standard atmosphere data
and the aerodynamic coefficients.
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